CENTRAL INTELLIGENCE AGENCY

INFORMATION REPORT

This Document contains information affecting the National Defense of the United States, within the meaning of Title 18, Sections 793 and 794, of the U.S. Code, as amended. Its transmission or revelation of its contents to or receipt by an unauthorized person is prohibited by law. The reproduction of this form is prohibited.

	SECRET/CONTROL - U.S. OFF.	ICIALS ONLY		25X1
COUNTRY	Foland	REPORT		
SUBJECT	Estimated Consumption and	DATE DISTR.	4 May 1953	
	Requirements of Iron Alloys for 1953	NO. OF PAGES	5	
DATE OF INFO.		REQUIREMENT NO. R	D	25 X 1
PLACE ACQUIRED		REFERENCES		
	This is UNEVALUATED Inf	ormation		
	THE SOURCE EVALUATIONS IN THIS REPORT THE APPRAISAL OF CONTENT IS TEN			25 Y 1

1. The following tables give estimated iron alloy requirements during 1953, in respect to the foundries and other consumers. Figures are in tons.

a. Consumption of Ferrochromium, (0.07%C and 0.10%C)

			Consumption of Fec			
Foundry	Product	Tons	0.07% C	Up to 0.10% C		
Baildon	Stainless steel	1,880	173	87		
Mala Panew	Cast steel with nickel content, for building	1,200	73			
	Cast steel without nickel, for building	5,600		58		
	Stainless steel	3,210	=	966		
Fort Wola	Steel castings	* **	-	38		
Stalowa Wola	Stainless steel	1,750	-	455		
	Total co	nsumption	180 ²	1,584		

25 YEAR RE-REVIEW

SECRET/COMTROL - U.S. OFFICIALS ONLY

RE-REVIEW

STATE X ARMY X NAVY X AIR X FBI AEC

(Note: Washington Distribution Indicated By "X"; Field Distribution By "#".)

25X1

- 2 -

b. Consumption of Ferromolybdenum 60%

Foundry	Electro- steel castings for building, without Ni	Electro- steel cast- ings, for building, with NI	Cast steel for tools	Stainless steel
1 outland	A B	A B	9,700 7.7	A B
Baildon	18,780 3.7	7,000 18.4	9,100 141	15000 080
Sosnowiec	2,250 .2	60 •4	-	
Batory	14,300 11.4	3,400 14.5	9,800 12.0	620 3.3
Mala Panew	14,500 23.7			3,200 25.7
Stalowa Wola	15,400 23.5/	13,900 40.3	3,000 15.2	1,750 3.5
Z.M.I.S.		6,500 19.5	-	1,800 9.0

A = Quantity in tons

B & Consumption of FeMo 60%

There will also be the following requirements Ministry for the Chemical Industry	6.5 tons
Central Authority for the Construction of Heavy Machinery	15. tons
Metal Institute	0.6 tons
Production of Martin steel	30.3 tons
Production of iron castings	38.4 tons

c. Consumption of Ferrotitanium

Foundry	Stainless steel	Special steel castings	Other Production	%Ti
and the second s	A B	A B	≜ B	
Baildon	1,880 39.7	40 •05	3.3	40%
Batory	6,200 7.7	•		20%
Mala Panew	3,200 37.7	· -		20%
Stalowa Wola	1,750 32.5	· · · · · · · · · · · · · · · · · · ·	-	40%
Metal Institute		.	- 1.1	25%

A = Quantity in tons

B = Consumption of FeTi

SECRET/CONTROL - U.S. OFFICIALS ONLY

25X1

- 3 -

d. Consumption of Ferrosilicon

Foundry	Electro- steel		Martins steel		Iron (<u>zeliwo</u>)		Iron a	Iron alloys	
· · · · · · · · · · · · · · · · · · ·	A	В	A	В	¥	В		В	
Foundry Industry	79,200		3,263,300	7,160	84,000	127	7,625	2,220	
Mala Panew			10,000	43	-		1,480	4*	
Stalowa Wola	37, 800	310	129,200	730 	780	10%	-		
Z.M.I.S.	20,000		-	-	-	-			

There will be additional consumption for 5,400 tons steel castings at Stalowa Wola (22 tons FeSi), and 3,200 tons for other production.

* = Synthetic pig iron

of Castings

A = Quantity in tons

B = Consumption of FeSi

2. The State Economic Planning Commission has formulated the plans for the consumption of iron alloys for Poland during 1953, the extent to which requirements may be covered by home production, and the resultant necessity for imports. These figures are given in the following table:

Iron Alloy	Stocks at 31 Dec. 1952	Stocks to be accumulated In 1953	Consumption in 1953	Net require- ments in 1953	Available from home sources	Necessary imports
FeMn refined	400	300	1,014	914	1,150	-
FeCr .07% C	372	100	180	-	300	a min
FeCr .06	403	180	1,550	1,320	600	200
FeV 50%	61	164	227	33 0		330
FeW	360	120	670	4 90	1,320	-
FeTi, 25%	94	161	190	257	-	257
FeMo, 60%	•	190	339	529	-	529
FeSi	- 2	3,600	15,800	18,400	18,400	-
FeNi	-	40	75	115	-	115

^{3.} Consumption of iron alloys by the individual foundries is given below. All figures are in tons.

SECRET/CONTROL - U.S. OFFICIALS ONLY

25X1

- 4 -

a. Consumption of ferronickel

Foundry	FeNi requirements
Foundry industry for production of 8,490 tons ciron castings	20.6
Fort Wola	3.1
Metal Institute	2.0
Central Administration for the Construction of Heavy Machinery	50.0

b. Consumption of ferrowolfram

Type of Production	A Bai	lldon B	A Ba	tory B	A Mal	a Panew B	Stalowa A	Wola B
Cast constructional steel without nickel	-	-	-	-	8,930	11.3	-	-
Cast constructional steel with nickel	7,080	4.2	-	-	-	-	-	-
Cast steel for tools (with carbon)	9.730	35.0	3,500	4.7	11	0.4	3,050	12.2
High-grade cast stee for tools	1 360	11.4	951	27.1	-	-	80	2.4
High speed steel	1,910	212.5	800	127.9	, - .	-	6 4 0	112.0
Stainless steel	1,880	1.0	-	-	3,220	106.6	7	•
Specialist cast stee	210	3.6		, 7 ,		-	-	-

Fort Wola will require 0.9 tons FeW

A = Quantity in tons

B = Consumption of FeW in tons

c. Consumption of ferrovanadium

Type of Production	A Bai	lldon B	A Bat	tory B	Ma.	La Panew:	Stalowa A	Wola B
Cast constructional steel without nickel	18,780	5.6	14,310		8,930	24.1	15,400	4.6
Cast constructional steel with nickel	7,080	1.4	3,450	1.7		-	-	-
Cast steel for tools (with carbon)	9 ,73 0		9,880		-	-	3,050	14.3
High-grade cast steel for tools	L 360	1.2	951	2.1	-	essa	80	0.5
High speed steel	1,910		800	23.4	-	-	640	14.2
Stainless steel	1,880	0.5	-	-	_	-	-	-

Metal Institute for Tests = .1.5 tons.

The foundry industry will require 9 tons of FeV for the production of steel containing vanadium . A = Quantity in tons

B = Consumption of FeV in tons.

SECRET/CONTROL - U.S. OFFICIALS ONLY

Approved For Release 2009/09/21: CIA-RDP80-00810A000900270001-2

- 5 -

d. Consumption of refined ferromanganese

Type of production	Baildon		Batory		Mala Panew		Stalowa Wola	
Refined constructional			A	₿	A	В	A	В
steel.	8,550	0.7	⇔ i/	-	23,760	21.4	,1,880	0.4
Cast constructional			***************************************				**. *	
steel without nickel	18,780		14,310		-	138.5	15,400	4.6
Cast constructional	<u> </u>							
steel with nickel			.3,450		1,200	4.3	13,900	5.6
Cast steel for tools					**		#	٠.,
(with carbon)	9,750		•	24.0	- '	-	3,050	2.4
High-grade cast steel				1 * "	**		£*	e
for tools	360	•05	951	0.4	-	` -	-	7
High speed steel	1,910	08	J	-	, = ; ,		-	-
Stainless steel	1,880	16, 2	625	6.2	3,220	1.1	1,750	14.0
Special cast steel	948	4.3	••.	_	-		-	-

A = Quantity in tons
B = Consumption of FeMn

Further consumption will be:

Foundry industry, for 2,550 tons Martin steel
Mala Panew Foundry, for 4,000 tons Martin steel
Baildon Foundry, for electrodes
Central Administration for
the Construction of
Heavy Machinery
Metal Institute

12.7 tons FeMn
0.4 tons FeMn
710 tons FeMn

22 tons FeMn 2 tons FeMn

25X1

25X1

SECRET/CONTROL - U.S. OFFICIALS ONLY